Demo page for the kde_diffusion
package
Introduction
Examples
The following examples were taken from the paper of Botev et al. from 2010 (TODO: add link). In all the examples, the rust implementation is compared to the Python implementation. The Python implementation resulted from the translation of the original Matlab code by Botev et al. into Python. The Python repository contains a single test case where the Python and Matlab inputs are compared.
1. Claw
Target density \(f(x)\):
$$ \frac{1}{2}N(0,1) + \sum_{k=0}^{4} \frac{1}{10} N\left(\frac{k}{2} - 1, \left(\frac{1}{10}\right)^2\right) $$
2. Strongly skewed
Target density \(f(x)\):
$$ \sum_{k=0}^{7} \frac{1}{8} N\left(3\left(\left(\frac{2}{3}\right)^k - 1\right), \left(\frac{2}{3}\right)^{2k}\right) $$
3. Kurtotic unimodal
Target density \(f(x)\):
$$ \frac{2}{3} N(0, 1) + \frac{1}{3} N\left(0, \left(\frac{1}{10}\right)^2\right) $$
4. Double claw
Target density \(f(x)\):
$$ \frac{49}{100} N\left(-1, \left(\frac{2}{3}\right)^2\right) + \frac{49}{100} N\left(1, \left(\frac{2}{3}\right)^2\right) + \frac{1}{350} \sum_{k=0}^6 N\left(\frac{k-3}{2}, \left(\frac{1}{100}\right)^2\right) $$
5. Discrete comb
Target density \(f(x)\):
$$ \frac{2}{7} \sum_{k=0}^{2} N\left(\frac{12k-15}{7}, \left(\frac{2}{7}\right)^2\right) + \frac{1}{21} \sum_{k=8}^{10} N\left(\frac{2k}{7}, \left(\frac{1}{21}\right)^2\right) $$
6. Asymmetric double claw
Target density \(f(x)\):
$$ \frac{46}{100} \sum_{k=0}^{1} N\left(2k-1, \left(\frac{2}{3}\right)^2\right) + \sum_{k=1}^{3} \frac{1}{300} N\left(-\frac{k}{2}, \left(\frac{1}{100}\right)^2\right) $$
7. Outlier
Target density \(f(x)\):
$$ \frac{1}{10} N(0, 1) + \frac{9}{10} N\left(0, \left(\frac{1}{10}\right)^2\right) $$
8. Separated bimodal
Target density \(f(x)\):
$$ \frac{1}{2}N\left(-12, \frac{1}{4}\right) + \frac{1}{2}N\left(12, \frac{1}{4}\right) $$
9. Skewed bimodal
Target density \(f(x)\):
$$ \frac{3}{4}N(0,1) + \frac{1}{4}N\left(\frac{3}{2}, \left(\frac{1}{3}\right)^2\right) $$
10. Bimodal
Target density \(f(x)\):
$$ \frac{1}{2} N\left(0, \left(\frac{1}{10}\right)^2\right) + \frac{1}{2} N(5, 1) $$